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2401. The mean is a measure of central tendency, so it
is affected by both scaling and translation. The
standard deviation and iqr, however, as measures
of spread, are affected only by scaling.

(a) True,
(b) False,
(c) True.

2402. Since the intersection we are looking for is near
the origin, we know that x is small. Hence, we can
use the small-angle approximation sin x ≈ x. This
gives 5x2 = 4x + 1, which is a quadratic. Solving,
x = −0.2, 1. So, there is an intersection around
x = −0.2.
To guarantee that x = −0.2 to 1dp, we test the
values of the function at error bounds:

x 4x + 1 5x sin x

−0.25 0 0.309
−0.15 0.4 0.112

Since 0 < 4 and 0.309 > 0.112, this shows that the
curves cross between x = −0.25 and x = −0.15, so
x = −0.2 to 1dp.

2403. (a) By Niii, the force on each particle has the same
magnitude F . So, the acceleration scale factor
is the reciprocal of the mass scale factor, i.e.
1
2 . This carries through to the final velocities.

(b) Using a = v−u
t , we get a1 = v

t0
and a2 = v

2t0
.

(c) Relative acceleration is a1 + a2 = 3v
2t0

. Hence,
at t = t0, relative displacement is

s = 1
2 · 3v

2t0
t2
0

≡ 3
4 vt0.

After this, the relative velocity is 3
2 v. So, in

the next (t − t0) seconds, the particles move a
further 3

2 v(t − t0) apart. Therefore, the total
displacement at time t ≥ t0 is

d = 3
4 vt0 + 3

2 v(t − t0)
≡ 3

4 v(2t − t0), as required.

2404. The point is a root and a stationary point. The
question is whether it is a point of inflection:
g′′(α) = 0 does not guarantee this. However, the
second derivative of a cubic is linear, and a (non-
zero) linear function must change sign at a root.
So, we do have a point of inflection:

xα

2405. Enacting the operator by the quotient rule,

d

dx

(
1

x + y

)
= 0

=⇒
−1 ·

(
1 + dy

dx

)
(x + y)2 = 0

=⇒ 1 + dy

dx
= 0

=⇒ dy

dx
= −1, as required.

2406. Let F(x) be a function such that F′(x) = y. The
lhs is now∫ b

a

y dx +
∫ d

c

y dx = F(b) − F(a) + F(d) − F(c).

The rhs is∫ d

a

y dx +
∫ c

b

y dx = F(d) − F(a) + F(b) − F(c).

These are the same, so the result is proved.

2407. The original graphs show that:

• the cubic f(x) is positive, with factors (x + 1)
and (x − 1)2,

• the quadratic g(x) is negative, with factors
(x − 1) and (x + 1).

Multiplying these, f(x) g(x) is a negative quintic
with factors (x + 1)2 and (x − 1)3. So, it has a
double root at x = −1 and a triple root at x = 1.
Hence, the graph y = f(x) g(x) is as follows:

x

y

−1 1

2408. Multiplying up, we need x2 ≡ A(x+1)+B(x−1).
But there are no terms in x2 on the rhs. So, the
original identity cannot hold.

2409. (a) Substituting the data points: 240 = A + B,
180 = A + B · 2λ, 165 = A + B · 22λ.

(b) The first equation is A = 240 − B. Subbing
into the other two, rearranging and taking out
a common factor of B,

−60 = B(2λ − 1),
−75 = B(22λ − 1).
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(c) Dividing gives a quadratic in 2λ:

4
5 = 2λ − 1

22λ − 1
=⇒ 4 · 22λ − 4 = 5 · 2λ − 5
=⇒ 4 · 22λ − 5 · 2λ + 1 = 0
=⇒ (4 · 2λ − 1)(2λ − 1) = 0
=⇒ λ = 0, −2.

We reject λ = 0, which gives 0
0 in the original

equation. So, λ = −2, B = 80, A = 160.
(d) The full model is T = 160 + 80 × 2−2t. In

the long term, the exponential term decays to
zero, and T → 160.

2410. Rearranging to y sin u = 0, we differentiate with
respect to y. This gives

sin u + y cos u
du

dy
= 0.

Dividing both sides by cos u yields

y
du

dy
+ tan u = 0, as required.

2411. (a) The graph y = |x2 − 1| is y = x2 − 1 with its
negative portion reflected in y = 0:

x

y

(b) Both intersections occur on the reflected part
of y = x2 −1, which is y = 1−x2. So, we solve
1 − x2 = x2, which has roots x = ±

√
2/2.

2412. We don’t need to use the cyclic quadrilateral fact
(although we could). We find the midpoints of the
diagonals. These are( −5+7

2 , 6−10
2

)
= (1, −2)( 9−7

2 , 4−8
2

)
= (1, −2).

Since the midpoints of the diagonals coincide, the
diagonals bisect each other, as required.

2413. Using the binomial expansion,

(2x ± 1)3 ≡ 8x3 ± 12x2 + 6x ± 1.

Subtracting the +ve and −ve versions, two terms
cancel, leaving 24x2 + 2 > 98, which gives x2 > 4.
The solution set, therefore, is (∞, −2) ∪ (2, ∞).

2414. (a) This is false. Consider k for which f(k) = 0
but g(k) ̸= 0. This value k is neither in P nor
in Q, so the set P ∪ Q cannot be R.

(b) This is true. There can be no value k for which
f(k) = 0 and f(k) ̸= 0.

2415. A counterexample is 3, 5, 7: all three are prime and
5 is the mean of the other two.

2416. Using a compound-angle formula,

sin 15° = sin(45° − 30°)
= sin 45° cos 30° − cos 45° sin 30°

=
√

2
2 ·

√
3

2 −
√

2
2 · 1

2

=
√

6 −
√

2
4 .

2417. To take (a, b) to (−a, b), we reflect the parabola
in the y axis. This means replacing x with −x.
So, the new parabola is y = −(−x)2 + 6(−x) + 4,
which simplifies to y = −x2 − 6x + 4.

Nota Bene

If two parabolae are reflection in a line x = k,
then they may also be thought of as translations
by some vector ai. This is only true of a graph
which itself has a line of symmetry. If the graphs
were cubics, the above technique would not work.

2418. The numerator is 4x ≡ 2(2x − 1) + 2. Hence,∫ 4x

2x − 1 dx

=
∫ 2(2x − 1) + 2

2x − 1 dx

=
∫

2 + 2
2x − 1 dx

= 2x + ln |2x − 1| + c, as required.

2419. (a) [0, 1) ∩ (0, 1] = (0, 1),

(b) [0, 2] \ [1, 2] = [0, 1),

(c) (0, 1) ∪ {0, 1} = [0, 1].

2420. The third differences are constant. So, the second
differences are partial sums of a constant sequence:
they are linear. The first differences are partial
sums of a linear sequence: they are quadratic.
The original terms are then the partial sums of
a quadratic sequence: they are cubic.

To summarise: calculating partial sums, which is
analogous to integration, raises the power by one
each time.
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2421. The area of the rectangle is

p n
√

p = p1+ 1
n = p

n+1
n .

The shaded area is then given by∫ p

0
x

1
n dx

≡
[

n
n+1 x

n+1
n

]p

0

≡ n
n+1 p

n+1
n .

So, the fraction of the rectangle which is shaded is

n
n+1 p

n+1
n

p
n+1

n

≡ n

n + 1 .

Hence, the curve divides the rectangle in the ratio
1 : n, as required.

2422. We can express e as 10log10 e, which gives

y = ex

≡
(
10log10 e

)x

≡ 10x log10 e.

So, consider the transformation

y = 10x 7−→ y = 10x log10 e.

The input x has been replaced by x log10 e. Hence,
y = 10x may be transformed to y = ex by a stretch,
scale factor 1/log10 e, in the x direction. This scale
factor may be simplified to ln 10.

Nota Bene

This simplification uses the fact that

loga b × logb a ≡ 1.

2423. Solving f(x) = −1,

x4 − 2x2 + 1 = 0
=⇒ (x2 − 1)2 = 0
=⇒ x = ±1.

Differentiating, f ′(x) = 4x3 − 4x. Evaluating this,
f ′(±1) = ±4 ∓ 4 = 0. So, the function f is neither
increasing nor decreasing; it is stationary.

2424. The integers differ by 2. So, naming the larger n,
n = m + 2. This gives

m2 + n2 = m2 + (m + 2)2 ≡ 2m2 + 4m + 4.

This has a factor of two. And the remaining factor
is m2 +2m+2 ≡ (m+1)2 +1, which, for m ∈ N, is
greater than 1. So, m2 + n2 cannot be prime.

2425. Over a common denominator, the lhs is
1

(1 +
√

x)4 + 1
(1 −

√
x)4 ≡ 2x2 + 12x + 2

(1 − x)4 .

So, the equation is 2x2 +12x+2 = (1−x)4, which
we can simplify to x4 − 4x3 + 4x2 − 16x − 1 = 0.
The Newton-Raphson iteration is

xn+1 = xn − x4
n − 4x3

n + 4x2
n − 16xn − 1

4x3
n − 12x2

n + 8xn − 16 .

Running this with x0 = 0 gives x1 = −0.0625, and
then xn → −0.0615 (3sf). Running it with x0 = 10
gives x1 = 7.82 and then xn → 4.01 (3sf).

2426. The integral formula is∫
f ′(x)

(
f(x)

)n
dx = 1

n + 1 f(x)n+1 + c.

This is shown by differentiation. By the chain rule,
d

dx

(
1

n+1
(
f(x)

)n+1
)

≡ 1
n+1 (n + 1)

(
f(x)

)n f ′(x)
≡ f ′(x)

(
f(x)

)n
, as required.

2427. (a) If the string were extensible, the accelerations
of the masses could be different. So, we must
assume that the string is inextensible.

(b) The equation of motion for the whole system
along the string is

mg = (M + m)a

=⇒ a = mg

M + m
, as required.

2428. Using a log rule,

logab an + logab bn ≡ logab anbn

≡ logab(ab)n.

By the definition of a logarithm, this is n.

2429. The volume is V = 1
3 πr2h. We differentiate this

implicitly with respect to t, using the product and
chain rules:

V = 1
3 πr2h

=⇒ dV

dt
= 1

3 π

(
2r

dr

dt
h + r2 dh

dt

)
.

Substituting the various quantities in,
dV

dt
= 1

3 π
(
2x · 1

4 x · x + x2 · 1
3 x

)
≡ 5π

18 x3, as required.

2430. The function is well defined where 5x2−3x−1 > 0.
Solving for the roots of the boundary equation, we
get x = −0.239, 0.839. Since the domain [1, ∞)
lies entirely outside the interval [−0.239, 0.839],
the quadratic is positive over this domain, and f is
thus well defined.



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

2431. We break up the fraction by writing the numerator
as 3x − 1 ≡ (3x − 2) + 1, before integrating by the
reverse chain rule:∫ 3x − 1

3x − 2 dx

=
∫ 3x − 2 + 1

3x − 2 dx

=
∫

1 + 1
3x − 2 dx

= x + 1
3 ln |3x − 2| + c.

2432. We note first that, since the interior angles are θ

and (180° − θ), sin θ and therefore cosec θ has the
same value whichever internal angle is chosen. So,
let the angle at the right-hand vertex be θ. Adding
axes, the situation is:

θ
A : (a, 0)

B : (0, b)

O

X

h

△OAX gives 1
2 h = a sin θ

2 . Likewise, △OBX gives

1
2 h = b sin

(
90° − θ

2
)

≡ b cos θ
2 .

Rearranging these,

a = h

2 sin θ
2

,

b = h

2 cos θ
2

.

The area is that of four triangles:

Arhom = 4 × 1
2 ab

≡ 2ab

= h2

2 sin θ
2 cos θ

2
.

The identity sin 2x ≡ 2 sin x cos x gives

Arhom = h2

sin θ

≡ h2 cosec θ, as required.

2433. Factorising, we get x = 0 or x2+(4 or 3)x2+3 = 0.
The discriminants are ∆ = 4 or − 3.

(a) The quadratic has two roots other than x = 0,
so the implication doesn’t hold.

(b) The quadratic has no real roots, which means
the implication holds.

2434. The value of a logarithm is unchanged when one
raises both base and input to the same power.

(a) log27 x2 ≡ log3 x
2
3 ≡ 2

3 log3 x.

(b) log 1
3

1
3
√

x
≡ log3 x

1
3 ≡ 1

3 log3 x.

Nota Bene

The log rule loga b ≡ logan bn doesn’t usually make
it onto standard lists of log rules. But it’s a useful
one. It’s the log equivalent of multiplying top and
bottom of a fraction by the same thing:

• Multiplying top and bottom of a fraction by
the same thing doesn’t change its value:

6
2 = 60

20 .

“The number you need to multiply 2 by to
get 6 is the same as the number you need to
multiply 20 by to get 60.”

• Raising base and input of a logarithm to the
same power doesn’t change its value:

log2 8 = log4 64.

“The number you need to raise 2 by to get 8
is the same as the number you need to raise
4 by to get 64.”

2435. (a) Since the boy exerts 400 N at 60° below the
horizontal on the sledge, the sledge must, by
Niii, exert 400 N at 60° above the horizontal
on the boy. Both of these are in addition to
the usual reaction of R = 25g. Since the usual
reaction exactly balances the boy’s weight, the
resultant force on the boy is 400 N.
Hence, the acceleration is

a = 400
25 = 16 ms−2.

The final velocity is

v = u + at

= 16 × 0.25
= 4 ms−1.

The distance travelled is

s = ut + 1
2 at2

= 1
2 × 16 × 0.252

= 1
2 m.

So, the boy travels 50 cm.
(b) The sledge cannot accelerate down through the

ground. The only horizontal force on it is
400 cos 60° = 200 N. Hence, its acceleration is
200
10 = 20 ms−2. After take-off, its (horizontal)

speed is 5 ms−1.
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2436. The scenario is as follows. The centre of the circle
is (1, 0), which is also a point on the boundary line.

(1, 0) x

y

Since the boundary line goes through the centre
of the circle, it is a diameter. Hence, the shaded
region is a semicircle, so the probability is 1

2 .

2437. The even and odd cases are different. Knowing
first and second term fixes the common ratio r,
thus the entire sequence. But knowing the first
and third term only fixes r2, so the hundredth term
could be positive or negative.

(a) Yes,
(b) No,
(c) Yes,
(d) No.

2438. The centre of the circle must be equidistant from
the three vertices A, B, C. Hence, it must lie on
the perpendicular bisector of A and B, and also
the perpendicular bisector of B and C. Since the
sides of the triangle cannot be parallel, neither can
these bisectors be, so there is exactly one point
where they cross.

Nota Bene

This point is the circumcentre of the triangle.

2439. (a) The first ten terms approximate the lhs as

1−1 + 2−2 + 3−3 + ... + 10−10

= 1.2913 (4dp).

(b) The trapezium rule approximates the rhs as
1
8

(
0−0 + 2

(
1
4

− 1
4 + 1

2
− 1

2 + 3
4

− 3
4
)

+ 1−1
)

= 1.2673 (4dp).

2440. The sum of the first 100 integers is
1
2 · 100 · 101 = 5050.

The sum of those that are multiples of 5 is

5 + 10 + ... + 100
= 5(1 + 2 + ... + 20)
= 5

2 · 20 · 21
= 1050.

So, the sum of those which are not multiples of 5
is 5050 − 1050 = 4000.

2441. By the chain rule,
dy

dx
= −24 cos2 x sin x.

Evaluating at x = π
3 , we get m = −3

√
3. The y

coordinate is 0. So, the equation of the tangent is
y =

√
3(π − 3x).

2442. (a) The position vectors are

p = 1
2 (b + c),

q = 1
2 (c + a),

r = 1
2 (a + b).

(b) i. The position vector of X is
#    „

OX ≡ #   „

OA + #    „

AX

= #   „

OA + λ
#    „

AP

= a + λ
( 1

2 (b + c) − a
)

≡ (1 − λ)a + 1
2 λ(b + c).

ii. By symmetry, the position vector of Y is
#    „

OY = (1 − µ)b + 1
2 µ(a + c).

(c) For X and Y to coincide, we need #    „

OX = #    „

OY :

(1 − λ)a + 1
2 λ(b + c) = (1 − µ)b + 1

2 µ(a + c)

Equating coefficients of a gives 1 − λ = 1
2 µ

and of b gives 1 − µ = 1
2 λ. Solving, we get

λ = µ = 2
3 .

(d) The argument in (c) also works with Z on CR.
Hence, there must be a single point 2

3 of the
way along all three lines AP, BQ, CR. So, the
three lines are concurrent. qed.

2443. The basic sinusoids sin(x) and cos(x) have period
2π. The transformed periods are as follows:

(a) 2π × 1
3 = 2

3 π.
(b) The individual waves have periods π and 2π/5,

so the full wave has period lcm(π, 2π/5) = 2π.
(c) The individual waves have periods π/2 and π/4,

so the full wave has period lcm(π/2, π/2) = π/2.

2444. The quotient rule formula gives
d

dx

(
1 +

√
x

1 −
√

x

)
≡

(
1 +

√
x

)′(1 −
√

x
)

−
(
1 +

√
x

)(
1 −

√
x

)′(
1 −

√
x

)2 .

Finding the individual derivatives, this is
1
2 x− 1

2
(
1 −

√
x

)
−

(
1 +

√
x

)
· − 1

2 x− 1
2(

1 −
√

x
)2

≡ x− 1
2

(1 −
√

x)2

≡ 1
(1 −

√
x)2√

x
, as required.
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2445. (a) The rhs is

1 − S(−x) ≡ 1 − e−x

e−x + 1 .

We multiply top and bottom by ex, then put
the terms over a common denominator:

1 − 1
1 + ex

≡ 1 + ex − 1
1 + ex

≡ ex

ex + 1
≡ S(x).

This is the lhs, proving the identity.
(b) We can integrate by inspection: the integrand

is of the form f′(x)/f(x). This gives∫
S(x) dx =

∫
ex

ex + 1 dx

= ln |ex + 1| + c.

Nota Bene

As ever with integration, if further understanding
is needed, differentiate the final result and check
that you get the integrand.

2446. We begin with a log law:

ln(sin x) + ln(cos x) + ln 2 = 0
=⇒ ln(2 sin x cos x) = 0
=⇒ 2 sin x cos x = 1.

Using a double-angle formula, this is

sin 2x = 1
=⇒ 2x = ..., π

2 , ...

∴ x = π
4 .

2447. The derivative is dy

dx
= −x−2. So, at (a, 1/a) the

tangent is

y − 1
a

= −a−2(x − a)

=⇒ y = − 1
a2 x + 2

a
.

The y intercept is 2
a ; the x intercept is at

0 = − 1
a2 x + 2

a

=⇒ x = 2a.

So, the area of △AOB is 1/2 · 2/a · 2a = 2, which is
independent of a, as required.

2448. A special case has been ignored. If n = 2, then
(n + 1)(n − 1) = 3 × 1. This is a factorisation, but
3 is nevertheless prime. This is the only exception:
for n > 2 both factors are greater than 1, and the
student’s argument holds.

2449. Standard differentiation results give

dy

dx
= sec2 x − cosec2 x.

Evaluating at x = π
4 , we find that

dy

dx
= 2 − 2 = 0.

This is the gradient of the tangent. An attempt to
find the negative reciprocal would yield division by
zero. But there is no error. The tangent at x = π

4
is parallel to the x axis, so the normal is parallel
to the y axis. It has equation x = π

4 .

2450. (a) The person’s displacement at the top is 1 m,
so their initial speed is given by 0 = u2 − 2g,
which yields u =

√
2g.

(b) Acceleration of person is
√

2g
0.2 = 11.067 ms−2.

Then Nii is R−60g = 60×11.076, which gives
the reaction during the jump as 1252 N.

(c) By Niii, the same resultant force must act on
the Earth during the jump as on the person.
So, the equation of motion for the Earth is

1252 − 60g = 6 × 1024aE

=⇒ aE = 1.1068 × 10−22 ms−2

This gives the initial speed of the Earth as
uE = 4.427 × 10−23 ms−1.

(d) The force on the Earth, while the person is in
the air, is 60g, by Niii. So, the acceleration is
60g/mE = 9.8 × 10−23 ms−2.

(e) The greatest displacement of Earth is given
by 0 = u2

E − 2aEsE. Rearranging this, we get
sE = 8.85 × 10−24 m (3sf).

Nota Bene

This can be tackled more easily using momentum,
which is not in the single maths A-level syllabus.
This solution is the longer way round via forces,
as dictated by the question.

2451. (a) (y − q) = (x − p) (dotted below) is a straight
line through (p, q). Applying a mod function
to (y − q) requires that (x − p) ≥ 0, i.e. x ≥ p.
Over this domain, (y − q) can now be positive
or negative. So, the graph is

x

y

(p, q)
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(b) (y − q) = (x − p) is a straight line through
(p, q). Applying a modulus function to (x − p)
requires y − q ≥ 0, i.e. y ≥ q. On this domain,
(x − p) can now be positive or negative. So,
the graph is

x

y

(p, q)

2452. (a) This is true. Since f is increasing everywhere
(and has no discontinuities), it can only cross
the x axis at most once.

(b) This is false. The function f(x) = ex−10 is a
counterexample: ex−10 = x has two roots.

(c) This is true. Since y = −x has a negative
gradient, what applies in (a) applies here. A
curve with positive gradient everywhere can
only cross y = −x once.

2453. This is binomial, with distribution B(5, 0.25). So,

P(at least 1 above)
= 1 − P(all below)
= 1 − 0.755

= 0.763 (3sf).

2454. The original line has initial position vector 5i and
direction vector i + 3j. We transform each to give

(a) r = 5j + t(3i + j),
(b) r = −5j + t(3i − j).

2455. The following function, defined piecewise, is a
counterexample:

g(x) =


1

x2 − 1 + 2, x ∈ [−1, 1]
1

x2 − 1 x ̸∈ [−1, 1].

Its graph is

x

y

Nota Bene

The result is true for polynomials.

2456. Firstly, we solve 1170x2 −389x−165 = 0 using the
quadratic formula. This gives x = −11/45, 15/26.
By the factor theorem, (45x + 11) and (26x − 15)
are factors.
Applying this result to the original quadratic, we
know that (45a + 11b) and (26a − 15b) are factors.
Checking that 45 × 26 = 1170, no constant factors
are needed. The factorisation is

1170a2 − 389ab − 165b2

≡ (45a + 11b)(26a − 15b).

2457. (a) By the definitions of the sin and cos functions,
the magnitudes are 1.

(b) The gradients of p and q are tan θ and − cot θ.
These are negative reciprocals, so p and q are
perpendicular.

(c) p is the position vector of the unit-circle point
at θ = − 1

6 π, and q is perpendicular, at θ = 1
3 π:

x

y

p

q

(d) We solve simultaneously for the vectors i, j, by
elimination. Multiplying up,

cos θp = cos2 θi + sin θ cos θj,
sin θq = − sin2 θi + sin θ cos θj.

Subtracting, the terms in j cancel. The first
Pythagorean identity gives i = cos θp − sin θq.
Subbing back in, j = − sin θp + cos θq.

2458. Dividing top and bottom by x2,

lim
x→∞

1 + ax2

1 + bx2

≡ lim
x→∞

1
x2 + a
1

x2 + b
.

We can now take the limit, with 1
x2 tending to zero

in both the numerator and the denominator. This
gives the value of the limit as a/b.

2459. (a) This is not true. y = cos x has negative values,
which, when put into the modulus function,
become positive. In other words, y = cos x

doesn’t have the x axis as a line of symmetry.
(b) This is true. y = cos x has the y axis as a

line of symmetry (cosine is an even function),
so applying the modulus function to its inputs
doesn’t change its output value.
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2460. A prime p > 3 cannot leave remainder zero when
divided by 3. So, assume, for a contradiction, that
p leaves remainder 1 when divided by 3, i.e. that
p = 3k + 1 for k ∈ N. Then

2p + 1 = 2(3k + 1) + 1
≡ 3(2k + 1).

But this is divisible by 3, which is a contradiction.
Hence, a Sophie Germain prime p must leave a
remainder of 2 when divided by 3.

2461. Firstly, we need to show that the line 2x − 3y = 5
lies outside the unit circle. The closest point on
2x − 3y = 5 to the origin lies on the normal
through O, which is y = − 3

2 x. Solving this with
2x − 3y = 5, the closest point is (10/13, −15/13),
marked P below. This is at a distance 5/

√
13 > 1

from the origin, so the line lies wholly outside the
circle.

x

y

P

Hence, if 2x − 3y > 5 is true, then (x, y) is below
and to the right of the line: outside the circle. So,
2x − 3y > 5 =⇒ x2 + y2 > 1, as required.

2462. In each answer below, the first set is the range of
the denominator. This is then reciprocated to give
the range of the function.

(a) [−1, 3] giving (−∞, −1] ∪ [1/3, ∞).
(b) [0, 4] giving [1/4, ∞).
(c) [1, 5] giving [1/5, 1].

2463. This is a quadratic in x
3
2 .

x3 − x
3
2 − 56 = 0

=⇒ (x 3
2 − 8)(x 3

2 + 7) = 0

=⇒ x
3
2 = 8, −7.

We reject −7, as x
3
2 ≥ 0. So, x = 8 2

3 = 4.

2464. (a) There are 5 ways of filling the first gap. This
leaves two gaps, each of which may be filled in
26 ways. This gives 5 × 262 = 3380 ways.

(b) There remain 5 ways of filling the first gap.
The second may be filled in 26 − 4 = 22 ways,
and the third in 26 − 5 = 21 ways. This gives
5 × 22 × 21 = 2310 ways.

2465. Using the reverse chain rule,∫ π
2

π
4

1 − cos 2x dx

=
[
x − 1

2 sin 2x
] π

2

π
4

=
(

π
2 − 1

2 sin π
)

−
(

π
4 − 1

2 sin π
2

)
= π

4 + 1
2 .

2466. This is true.

If the linear equations are scalar multiples of each
each, such as x + y = 3 and 2x + 2y = 6, then any
(x, y) pair satisfying one automatically satisfies the
other. Graphically, both equations are the same
line, which contains infinitely many (x, y) points.

2467. Drawing in a radius gives a right-angled triangle,
lengths 1

2 l and 3
2 l.

By Pythagoras,

r2 = 1
4 l2 + 9

4 l2

≡ 5
2 l2.

This gives A = πr2 = 5
2 πl2, as required.

2468. By the quotient rule,

dy

dx
=

100
(
100 + x2)

− 100x · 2x(
100 + x2

)2 .

The derivative is zero iff its numerator is zero. So,
1002−100x2 = 0 =⇒ x = ±10. Substituting back
in, we get two stationary points, at (±10, ±5).

2469. The binomial expansion gives(
1 ± 3

√
2
)3

= 1 ± 3 · 2 1
3 + 3 · 2 2

3 + 2.

When subtracting, the first and third terms cancel,
leaving 6 3

√
2 + 4.

2470. This is correct. The frictional force on the truck
acts inwards, towards the centre of the circle. This
is the force that keeps the truck from leaving the
roundabout. By Niii, therefore, the frictional force
on the road must act outwards.
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2471. Differentiating, g′(x) = 3x2 + 2kx + k. For g to be
increasing everywhere, we require that, fro all x,

3x2 + 2kx + k > 0.

The lhs is a positive quadratic, so it is positive
everywhere iff ∆ < 0. This is 4k2 − 12k < 0.
The boundary equation is 4k2 − 12k = 0, giving
k = 0, 3. So, since 4k2−12k is a positive quadratic,
its value is negative for k ∈ (0, 3).

2472. The translations associated with +c and +d do
not affect areas, so we can consider y = aepx being
transformed to y = beqx.
The outputs are scaled by b/a, which is a stretch
by scale factor b/a in the y direction.
In the inputs, px has been replaced by qx, which is
the same as replacing x by (q/p)x. This is a stretch
by scale factor p/q in the x direction.
Overall, the area scale factor is

asf = b

a
× p

q
≡ bp

aq
.

2473. The magnitudes of the accelerations are the same.
So, we can form an equation of motion for the
whole system. The tensions are an internal force
pair and cancel, leaving

m2g − m1g = (m1 + m2)a
=⇒ (m2 − m1)g = (m1 + m2)a

=⇒ a = m2 − m1
m1 + m2

g, as required.

2474. A point on the unit circle is (cos θ, sin θ). So, for
x ∈ [−1, 1], we have arccos x = θ, where θ ∈ [0, π].
This gives

sin(arccos x) = y.

Hence, the graph is made up of all (x, y) points of
the form (cos θ, sin θ) for θ ∈ [0, π].

x

y

1
θ

(cos θ, sin θ)

This is the upper unit semicircle.

2475. (a) If f(x) g(x) = 0, then f(x) = 0 or g(x) = 0. So,
x ∈ A ∪ B.

(b) If fg(x) = 0, then g(x) ∈ A. We do not have
enough information to solve this.

(c) If f(x)/g(x) = 0, then f(x) = 0. And, since there
is nothing in the solution set of both A and B,
the fraction is well defined for every element of
A. So, the solution set is A.

2476. The curves are reflections in y = x. So, we look for
points of tangency on y = x. Solving x2 + x = x

gives x2 = 0. Since x = 0 is a double root, we know
that this is a point of tangency between y = x2 +x

and y = x. Hence, it is also a point of tangency
between y = x2 + x and x = y2 + y:

x

y

2477. (a) The derivative is dy
dx = 3x2 + x. So, m = 14

at (2, 13). The equation of the tangent line is
y − 13 = 14(x − 2), i.e. y = 14x − 15.

(b) Substituting for y, x3 + 2x + 1 = 14x − 15,
which simplifies to x3 − 12x + 16 = 0.

(c) We can use the factor theorem. Since x = 2
must be a (double) root of the above equation,
(x − 2) must be a (double) factor. This gives
(x − 2)2(x + 4) = 0. So, the coordinates of P

are (−4, −71).

2478. (a) This is due to the symmetry of the normal
distribution. The shaded areas represent the
probabilities.

k−k

(b) Using the sketch above, the condition X2 > k2

restricts the possibility space to the shaded
area. This gives
i. P

(
0 < X < k | X2 > k2)

= 0,
ii. P

(
X < 0 | X2 > k2)

= 1
2 .

2479. The functions are quadratic, so the first derivatives
are linear. Considering y = f ′(x) and y = g′(x)
as straight lines, we know that both pass through(
p, f ′(p)

)
and the distinct point

(
q, f ′(q)

)
. Since

there is only one line through any two points, the
derivatives must be identical: f ′(x) ≡ g′(x).
Integrating this, f(x)+c1 = g(x)+c2. We combine
the constants to get f(x) − g(x) = c, as required.

2480. (a) The mod function doesn’t affect the outputs,
and all positive inputs are still available, so
the range is the same as that of the normal
sine function: [−1, 1].

(b) The mod function renders the outputs of the
sine function positive, converting the range of
the sine function, which is [−1, 1], into [0, 1].
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2481. Using the quotient rule,

dy

dx
= (x2 − p)′(x2 − q) − (x2 − p)(x2 − q)′

(x2 − q)2

≡ 2x(x2 − q) − (x2 − p)2x

(x2 − q)2

≡ 2x(p − q)
(x2 − q)2 .

Since the numerator has a factor of x, it is zero
as long as the fraction is well defined. Hence, the
only restriction is q ̸= 0.

2482. cos2 x = 1 − sin2 x gives a quadratic in sin x:

sin x − 1 = 4 cos2 x

=⇒ sin x − 1 = 4 − 4 sin2 x

=⇒ 4 sin2 x + sin x − 5 = 0
=⇒ (4 sin x + 5)(sin x − 1) = 0.

The first factor has no roots, as −5/4 is outside the
range of the sine function. So, sin x = 1, which
holds at x = 90°, plus any multiple of 360°. In set
notation, this is {x : x = 90° + 360°n, n ∈ Z}.

2483. The minimum and maximum horizontal speeds are
19.6 and 20.4 ms−1. For each, the vertical data are
s = −2.5, a = −g, u = 0, giving −2.5 = −4.9t2, so
time of flight is t = 5/7. Multiplying by horizontal
speed, dmin = 14 m and dmax = 14.57 m (2dp).

2484. All 4! = 24 orders of x1, x2, x3, x4 are equally
likely. So, the probability is 1

24 .

Nota Bene

The probability that e.g. x1 = x2 is zero, as x1
and x2 are values chosen from infinitely many.

2485. The vertex of y = x2 − 4x is at (2, −4). Also we
know that g(0) = 0 and g(4) = 0. The sketch is

x

y

4

(2, −4)

(a) For k ∈ (0, 2), the domain does not include the
vertex and 0 is the maximum, so the range is
{y ∈ R : g(k) < y < 0}, which is (k2 − 4k, 0).

(b) For k ∈ [2, 4), the domain does include the
vertex, and 0 is the maximum, so the range is
{y ∈ R : −4 ≤ y < 0} or [−4, 0).

(c) For k ∈ [4, ∞), the domain does include the
vertex, and g(k) is the maximum, so the range
is {y ∈ R : −4 ≤ y < g(k)} or [−4, k4 − 4k).

2486. (a) Quoting the standard result, un = 5 × 3
2

n−1.

(b) We require un+1 − un > 1000. The boundary
equation is

5 × 3
2

n − 5 × 3
2

n−1 = 1000

=⇒ 3
2

n−1(5 × 3
2 − 5) = 1000

=⇒ n − 1 = log 3
2

400
=⇒ n = 15.776...

So, 16 is the smallest such value of n.

2487. (a) We write f(x) = xx ≡ (eln x)x ≡ ex ln x.

(b) Differentiating by the chain and product rules,

dy

dx
= ex ln x(x ln x)′

≡ ex ln x
(

ln x + x · 1
x

)
≡ xx(ln x + 1).

2488. (a) For y = g(|x|), x can also be negative:

x

y

(b) For |y| = g(x), y can also be negative:

x

y

(c) For |y| = g(|x|), x and y can also be negative:

x

y

2489. Using the first Pythagorean trig identity, we have
a quadratic in sin x:

6 cos2 x + sin x − 5 = 0
=⇒ 6(1 − sin2 x) + sin x − 5 = 0
=⇒ 6 sin2 x − sin x − 1 = 0
=⇒ (2 sin x − 1)(3 sin x + 1) = 0
=⇒ sin x = 1

2 , − 1
3 .

Each gives two roots in the given domain. The
solution is x = 30°, 150°, 199.5°, 340.5°.
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2490. Writing longhand and using the chain rule,

dx1
dx5

≡ dx1
dx2

· dx2
dx3

· dx3
dx4

· dx4
dx5

= 1 · 2 · 3 · 4
= 24.

2491. The lhs is ∫ k

0
(2x − 1)2 dx

≡
[

1
6 (2x − 1)3

]k

0

≡ 1
6 (2k − 1)3 + 1

6
≡ 4

3 k3 − 2k2 + k.

The rhs is ∫ 4

k

4(x − 2)3 + 6 dx

≡
[
(x − 2)4 + 6x

]4

k

≡ (16 + 24) −
(
(k − 2)4 + 6k

)
≡ 24 + 26k − 24k2 + 8k3 − k4.

So, the full equation is
4
3 k3 − 2k2 + k = 24 + 26k − 24k2 + 8k3 − k4,

=⇒ k4 − 20
3 k3 + 22k2 − 25k − 24 = 0.

Using a calculator’s polynomial solver, we get a
negative root, which we reject as k is positive, and
k = 3.

2492. The area is A = sin t cos t, which a double-angle
formula converts to A = 1

2 sin 2t. Differentiating,
dA
dt = cos 2t. Setting this to zero so that the area
is stationary, 2t = π

2 . This gives t = π
4 .

2493. To transform the inputs, we replace x by x+a; this
is a translation by −ai. To transform the outputs,
we add b; this is a translation by bj. So, the overall
transformation is translation by vector −ai + bj.

2494. The force diagram is

10g

Fmax
15°

R

T

Vertical equilibrium gives

R + T sin 15° = 10g

=⇒ R = 10g − T sin 15°.

Since the sledge is moving, friction is at

Fmax = µR = g − sin 15°
10 T.

If the child is pulling with minimal force, then the
horizontal forces are also balanced, so

T cos 15° = g − sin 15°
10 T

=⇒ T = g

cos 15° + sin 15°
10

= 9.88 N (3sf).

2495. The lines have no simultaneous solution points, so
they are not concurrent. This leaves three options:

(a) none are parallel, giving n = 3,
(b) two are parallel, giving n = 2,
(c) three are parallel, giving n = 0.

The sketches are as follows:

(a) (b) (c)

2496. The identity is automatically true when x ≥ 0.
When x < 0, we are told that g(|x|), which is
g(−x), is equal to g(x). This means the graph has
the y axis as a line of symmetry.

2497. Multiplying out and differentiating,

y = 1
5 e2x + 4

5 e−3x

=⇒ dy
dx = 2

5 e2x − 12
5 e−3x.

Substituting for y and dy
dx , the lhs is

dy

dx
+ 3y − e2x

≡ 2
5 e2x − 12

5 e−3x + 3
5 e2x + 12

5 e−3x − e2x

≡ 0.

Therefore, the given curve satisfies the de.

2498. A quartic can have precisely three roots when
when one is a double root. A counterexample to
the claim is (x − 1)2(x − 2)(x − 3) = 0.

2499. Let P = x3 +y3; we are trying to maximise P . For
y ≥ 0, we have y =

√
1 − x2. So, we can express

P in terms of x as P = x3 + (1 − x2) 3
2 . Looking

for a maximum, we set the derivative to zero:
dP

dx
= 3x2 − 3x

(
1 − x2) 1

2 = 0

=⇒ x2 = x
(
1 − x2) 1

2

=⇒ x4 = x2(1 − x2)
=⇒ x2(2x2 − 1) = 0.
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This yields x = 0, ±1/
√

2, giving P = 1, 1/
√

2. The
latter is less than 1. So, the maximum value of
x3 + y3 is 1, as required.

Alternative Method

Since both terms in the lhs of x2 +y2 = 1 are non-
negative, we know that x2, y2 ∈ [0, 1]. Raising a
number in [0, 1] to the power 3/2 cannot increase
it. Hence, x3 ≤ x2 and y3 ≤ y2. Combining these,

x3 + y3 ≤ x2 + y2.

The value of x2 + y2 is 1, so the value of x3 + y3

is bounded above by 1. This bound is attainable,
with x = 1, y = 0. Hence, the maximum value of
x3 + y3 is 1, as required.

2500. Each is an instance of the chain rule. The latter is
generally known as implicit differentiation, but it
is exactly the same process as the former.

(a) True,
(b) True.

End of 25th Hundred


